
D O I: 10 .1126/scitranslmed.3003380
, (2012); Sci Transl Med

 et al.N icholas J. R oberts
The Predictive Capacity of Personal Genome Sequencing

 http://stm.sciencemag.org/content/early/2012/04 /02 /scitranslmed.3003380
be found at: 

 and other services, including high-resolution figures, canA complete electronic version of this article

http://stm.sciencemag.org/content/suppl/2012/04 /02 /scitranslmed.3003380v1.D C 1.html 
can be found in the  online  version of this article  a t: Supplementary Material 

 http://www.sciencemag.org/about/permissions.dtl
 in whole  or in part can be found at: article

permission to reproduce this of this article  or about obta ining reprintsInformation about obta ining 

 is a  registered trademark of AAAS . Science Translational Medicinereserved. The title  
W ashington, D C  20005. C opyright 2012 by the  American Association for the  Advancement of S cience; a ll rights
week in D ecember, by the  American Association for the  Advancement of S cience, 1200 N ew Y ork Avenue N W , 

 (print IS S N  1946-6234; online  IS S N  1946-6242) is published weekly, except the  lastScience Translational Medicine

 o
n 

A
pr

il 
3,

 2
01

2
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://stm.sciencemag.org/
http://stm.sciencemag.org/content/early/2012/04/02/scitranslmed.3003380
http://www.sciencemag.org/about/permissions.dtl


 

2 April 2012 / Page 1 / 10.1126/scitranslmed.3003380 

New DNA sequencing methods will soon make it possible 
to identify all germline variants in any individual at a 
reasonable cost. However, the ability of whole-genome 
sequencing to predict predisposition to common diseases 
in the general population is unknown. To estimate this 
predictive capacity, we use the concept of a 
“genometype”. A specific genometype represents the 
genomes in the population conferring a specific level of 
genetic risk for a specified disease. Using this concept, we 
estimated the capacity of whole-genome sequencing to 
identify individuals at clinically significant risk for 24 
different diseases. Our estimates were derived from the 
analysis of large numbers of monozygotic twin pairs; 
twins of a pair share the same genometype and therefore 
identical genetic risk factors. Our analyses indicate that: 
(i) for 23 of the 24 diseases, the majority of individuals 
will receive negative test results, (ii) these negative test 
results will, in general, not be very informative, as the risk 
of developing 19 of the 24 diseases in those who test 
negative will still be, at minimum, 50 - 80% of that in the 
general population, and (iii) on the positive side, in the 
best-case scenario more than 90% of tested individuals 
might be alerted to a clinically significant predisposition 
to at least one disease. These results have important 
implications for the valuation of genetic testing by 
industry, health insurance companies, public policy 
makers and consumers. 

INTRODUCTION 
As a result of continuing advances in high-throughput 
sequencing technologies (1–4), whole-genome sequencing 
will soon become an affordable approach to identify all 
sequence variants in an individual human. Recent evidence 
suggests that each human genome has more than 3 million 
sequence variants, some common, some infrequent (5). To 
date, several thousand genomic variants have been associated 

with human diseases, either as rare variants in Mendelian 
disorders or as common SNPs in genome-wide association 
studies (GWAS) (6, 7). Whole-genome or whole-exome 
sequencing has recently been used to identify new disease 
predisposing variants in various familial disorders, such as 
familial pancreatic cancer (8) and Miller syndrome (9). 
However, the potential utility of genome-wide sequencing for 
personalized medicine in the general population is unclear. 
Suppose, for example, that sequencing becomes sufficiently 
inexpensive that all individuals, at birth, could have their 
genomes sequenced at negligible cost. What fraction of the 
population would benefit from such sequencing? “Benefit” in 
this context is defined as receiving information indicating that 
the risk of disease is increased or decreased to a degree that 
would alter an individual's lifestyle or medical management. 

On the surface, it might seem impossible to answer this 
question at present, as there are millions of genetic variants in 
every individual and the contribution of nearly all of these 
variants to any disease is unknown. However, there is one 
group of individuals in which this question can be 
immediately addressed: monozygotic twin pairs. If one twin 
of the pair has a disease, then the probability of the other twin 
developing that disease is dependent on the genome whenever 
that disease has some genetic component. We show below 
that when this logic is applied to a large numbers of twins, 
estimates of the potential benefits of genome-wide 
sequencing in the general (non-twin) population can be made. 
 
RESULTS 

Conceptual basis 
The key to our analysis is the concept of a “genometype”. We 
do not know the genomic sequences of the twin pairs 
analyzed in the studies described herein, but we do know that 
each twin pair shares a nearly identical genome (10) and that 
a genome confers a particular genetic risk to every disease. 
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For each disease, we group genomes that confer identical 
genetic risks into genometypes. For example, genometypes 
could be grouped into 20 bins, with genometypes in bin 1 
conferring zero genetic risk, genometypes in bin 2 conferring 
3% genetic risk, genometypes in bin 3 conferring 10% 
genetic risk, etc. We can then estimate what distributions of 
genometypes in the population best reflect the observed 
monozygotic twin concordancy and discordancy for any 
given disease. 

In twin studies on diseases, heritability (defined in Box 1) 
is generally based on the difference in the incidence of a 
disease in monozygotic versus dizygotic twins (11, 12). 
Heritability reflects the average genetic contribution to 
disease in a twin population. We are interested in the 
distribution of genetic risks rather than the average. For 
example, a 30% average risk could reflect a small fraction of 
twin-pairs with genometypes conferring high genetic risk or a 
larger fraction of twin-pairs with genometypes conferring a 
moderate genetic risk. Among all the distributions of 
genometypes that are compatible with the twin epidemiologic 
data, we wished to find the distributions that maximized or 
minimized the potential clinical utility of identifying those 
genometypes by genomic sequencing. 

Whole-genome sequencing-based tests, like any genetic 
test, can be informative in two ways: negative and positive 
tests would indicate a substantially lower or higher risk, 
respectively, than that of the general population. The 
challenge is to define “substantially” in clinically meaningful 
and quantitative terms. An example might help put this 
challenge into perspective. Suppose a woman receives a 
whole-genome test result indicating that she has a 90% 
lifetime risk (the total risk over her entire life) of developing 
breast cancer. She may decide to have a prophylactic double 
mastectomy to prevent this outcome. Similarly, if the test 
indicated an 80% or even a 50% lifetime risk of developing 
breast cancer, she may consider mastectomy. On the other 
hand, if the test indicated only a 14% risk of developing 
breast cancer, then mastectomies would be considered by 
very few women, given that most women today do not opt for 
prophylactic mastectomies even though the lifetime risk of 
developing breast cancer in the general population is 12%. 

This example illustrates that the risk threshold required for 
clinical utility represents a balance between the risk reduction 
afforded by an intervention and its negative consequences. A 
precedent exists for defining this threshold, in that the 
decision to implement genetic tests is often based on a 
positive predictive value (PPV) of at least 10%, implying that 
more than 1 in 10 patients with a positive test result are 
expected to develop disease (13). While the choice of this 
threshold will depend on the specific intervention and should 
ideally be left to the individual, we use this 10% threshold for 
our population-level analyses of 20 of the 24 diseases 

analyzed (table S1). In the other four diseases (chronic fatigue 
syndrome, gastro-esophageal reflux disorder, coronary heart 
disease-related death and general dystocia), which occur at 
relatively high frequency in the population, this 10% 
threshold is inadequate to distinguish individuals with a 
significantly increased genetic risk from the rest of the 
population. For these four diseases (table S1), a more 
appropriate threshold corresponds to one conferring a genetic 
risk that is at least as great as that of the non-genetic 
component. Individuals with genometypes conferring this 
degree of genetic risk would therefore have a total risk at 
least-twice as large as those without any genetic predisposing 
factors. This 2x threshold in relative risk is similar to those 
widely used as clinical benchmarks for common diseases 
(14–18). 

For whole-genome testing in healthy individuals, we 
thereby defined a threshold at which a positive test result 
would be clinically meaningful as follows. If the non-genetic 
risk was <5%, then the threshold was set at 10%. If the non-
genetic risk was >5%, then the threshold was set at 2x the 
non-genetic contribution. Though we have used these 
particular thresholds in most of the examples described 
below, we also describe how these results varied when other 
thresholds were considered. 
 
Twin data 
We collated monozygotic twin pair data from the Swedish 
Twin Registry, Danish Twin Registry, Finnish Twin Cohort, 
Norwegian National Birth Registry and the National 
Academy of Science – National Research World War II 
Veteran Twins Registry (19–31) (Table 1). From these 
registries, we selected data representing 24 diseases of 
diverse etiologies including autoimmune diseases, cancer, 
cardiovascular diseases, genitourinary diseases, neurological 
diseases and obesity-associated diseases. Three of these 
conditions (coronary heart disease, cancer and stroke) 
represent the leading causes of mortality in the United States, 
accounted for 54.2% of total deaths in 2007, and are therefore 
of major public health importance (32). The thresholds for a 
clinically meaningful test result, as defined above, were 
calculated from disease prevalence and non-genetic risks in 
the populations from which the twins were drawn (19–31) 
(Materials and Methods, Table 1 and table S2). 
 
Mathematical model 
We then developed computational methods to evaluate 
possible frequency (f) and genetic risk (r) combinations for a 
population containing 20 genometypes. Genometype 
frequency is defined as the proportion of twin pairs in the 
population that have a given genometype (Box 1). 
Genometype genetic risk is defined, for each disease, as the 
absolute increment in risk that an individual with that 
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genometype will face compared to someone with no genetic 
risk at all (Box 1). For any combination of genometypes, each 
with a certain frequency and genetic risk, we obtain an 
expected distribution of disease-affected individuals among a 
monozygotic twin cohort. Many different combinations of 
genometype frequencies and genetic risks match the observed 
distributions in monozygotic twins; we are interested in those 
combinations (distributions) that maximize or minimize 
clinical utility, thus putting bounds on the expectations from 
whole-genome sequencing. The mathematical framework for 
our study, and associated statistical and technical issues, are 
detailed in the Material and Methods. 
 
Clinical implications 
These analyses allowed us to address various measures of 
potential clinical utility. First, for each disease, what is the 
maximum and minimum fraction of patients with the disease 
that would receive a positive test, i.e., a result indicating that 
they have a substantially increased risk of that disease? The 
answers to this question are graphically shown in Fig. 1 for 
each of the 24 diseases (for three diseases, we present 
different answers for males and females, resulting in a total of 
27 disease categories). As can be seen from Fig. 1, the 
fraction of patients that would receive a positive test varies 
widely from disease to disease. The majority of patients 
(>50%) who would ultimately develop 13 of the 27 disease 
categories would not test positive, even in the best-case 
scenario. On the other hand, there were four disease 
categories - thyroid autoimmunity, type I diabetes, 
Alzheimer's disease, and coronary heart disease-related 
deaths in males - for which genetic tests might identify more 
than 75% of the patients who ultimately develop the disease. 
Genometype risk and frequency distributions for all diseases 
are shown in table S3 and graphically for representative 
diseases in fig. S1. 

We could also determine the maximum and minimum 
fraction of individuals in the population (rather than the 
fraction of patients with disease) who would receive positive 
test results for each disease. As shown in Fig. 2, this fraction 
is generally small, as expected, because the incidence of most 
diseases is relatively low. Do these negative tests, which 
would be received by the great majority of individuals for 
most diseases, have value? Negative tests could be valuable 
to individual patients if they indicated a considerably lower 
total risk than would be assumed in the absence of testing. As 
can be seen from Fig. 3, though, negative tests are generally 
not very informative in the case of whole-genome sequencing 
as they are limited by the non-genetic compoment of risk. For 
22 of the 27 disease categories studied, a negative test would 
not indicate a risk that is less than half that in the general 
population, even in the best-case scenario. This level of risk 
reduction is probably not sufficient to warrant changes of 

behavior, lifestyle, or preventative medical practices for these 
individuals (33, 34). On the other hand, there was one disease 
category (Alzheimer's disease, Fig. 3) in which a negative test 
result might indicate as little as a ~12% relative risk of 
disease compared to the entire twin cohort, at least in the 
best-case scenario. Knowledge of such a reduced risk might 
be comforting and relieve anxiety, particularly to those with a 
family history of Alzheimer's disease. 

What is the maximum fraction of individuals that could 
receive at least one positive test result, i.e., a report indicating 
that s/he is at risk for at least one of the 24 diseases assessed? 
From the data depicted in Fig. 2, we estimate that >95% of 
men and >90% of women could receive at least one positive 
test result if the risk alleles were actually distributed in the 
way that produced maximal sensitivity in our model. We 
assumed that the risk alleles for these 24 diseases were 
independent in these estimates; if they were not independent, 
then these figures represent overestimates. On the other hand, 
these frequencies may represent underestimates as there are a 
number of additional diseases with hereditary components 
that have not yet been studied in monozygotic twins or 
included in our analyses. At the very least, if we consider 
only distinct disease categories whose pathogenesis is 
unlikely to be shared, our analyses suggest that, in the best-
case scenario, the majority of tested individuals might be 
alerted to a clinically meaningful risk by whole-genome 
sequencing. 

It was of interest to determine how the results described 
above varied with the threshold chosen for the analysis. For 
example, it might be argued that a threshold of 10% was too 
low for true clinical utility. Our analyses show that the 
maximum fraction of affected cases testing positive, as well 
as the maximum fraction of the total population that tests 
positive, is not changed much when the thresholds are 
changed to 20% (tables S4 and table S5). With very high 
thresholds, however, both these measures of sensitivity 
decrease significantly (table S4 and table S5). Moreover, the 
maximum predictive value of a negative test drops 
precipitously at higher thresholds (table S6). 
 
DISCUSSION 
The general public does not appear to be aware that, despite 
their very similar height and appearance, monozygotic twins 
in general do not always develop or die from the same 
maladies (35, 36). This basic observation, that monozygotic 
twins of a pair are not always afflicted by the same maladies, 
combined with extensive epidemiologic studies of twins and 
statistical modeling, allows us to estimate upper- and lower-
bounds of the predictive value of whole-genome sequencing. 

On the negative side, our results show that the majority of 
tested individuals would receive negative tests for most 
diseases (Fig. 2). Moreover, the predictive value of these 
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negative tests would generally be small, as the total risk for 
acquiring the disease in an individual testing negative would 
be similar to that of the general population (Fig. 3). On the 
positive side, our results show that, at least in the best-case 
scenario, the majority of patients might be alerted to a 
clinically meaningful risk for at least one disease through 
whole-genome sequencing. 

These conclusions are consistent with what is now known 
about risk allele loci from genome-wide association studies 
(GWAS) (37). In general, GWAS have shown that many loci 
can predispose to disease and that each risk allele confers a 
relatively small effect (38, 39). For example, a recent analysis 
of large cohorts of individuals with colorectal cancer showed 
that only ~1.3% of phenotypic variance could be accounted 
for by the 10 loci discovered through GWAS (40). However, 
it could be argued that the relatively low level of utility that 
might be inferred from such studies is misleading. In 
particular, it is possible that a more complete knowledge of 
disease-associated variants and their epistatic relationships 
would be able to reliably predict who will and who will not 
develop disease in the general population. Our results allow 
us to estimate the maximum possible reliability of such tests. 

Several of our conclusions are based on the genometype 
frequency and risk distributions that would maximize the 
clinical utility of genetic testing, i.e., are best-case scenarios. 
The actual frequency and risk distributions of genometypes in 
the population are not likely to be distributed in this way. 
Indeed, other distributions are also consistent with the 
monozygotic twin data on which our maxima are determined 
and all other distributions yield less clinical utility than those 
of the maxima, as shown in Figs. 1 to 3. Moreover, in the real 
world, it is unlikely that the biomedical correlates of every 
genetic variant and the epistatic relationships among these 
variants will ever be completely known, or that the analytic 
validity of genetic testing will be perfect - as we assume in 
our ideal scenario. Thus, our conclusions purposely 
overestimate the value of whole-genome sequencing that will 
be achieved - they represent an absolute upper bound that 
cannot be improved by improvements in technology or 
genetic knowledge. As a practical example of this principle, 
we estimate that a negative whole-genome sequencing-based 
test could indicate a ~ two-fold decrease in risk for prostate 
cancer in men and a similar two-fold decrease for urinary 
incontinence in women. But this two-fold decrease would 
only apply in a world in which the risk alleles are distributed 
in a fashion that maximizes the sensitivity of whole genome 
testing (Fig. 3). In the real world, the risk alleles are not likely 
to be distributed in this ideal fashion, and omniscience about 
every variant is not likely to be realized. Thus, the risk of 
these diseases in patients who test negative will likely be even 
more similar to that of the general population. For diseases 
with a lower heritable component, such as most forms of 

cancer, whole-genome based genetic tests will be even less 
informative. Thus, our results suggest that genetic testing, at 
its best, will not be the dominant determinant of patient care 
and will not be a substitute for preventative medicine 
strategies incorporating routine checkups and risk 
management based on the history, physical status and life 
style of the patient. 

It is important to point out that our study focused on 
testing relatively common diseases in the general population 
and did not address the utility of whole-genome sequencing 
to identify the genetic basis of rare monogenic diseases. In 
such unusual cases, it has already been shown that whole-
genome sequencing can prove highly informative (8, 9). 

As with any model-based study, our conclusions have a 
number of caveats. Our analyses are based on data from twin 
studies and the assumptions made therein (11). Specifically, 
we do not model gene-environment interactions and rely on 
the prevalence of disease in the twin cohorts; this prevalence, 
as well as the operative non-genetic contributions, may differ 
from that in the general population. Though twins are likely 
to be representative of the general population, the estimates 
provided by our model could be improved through analyses 
of larger twin cohorts as these become available, as well as 
through a more complete phenotypic evaluation of twins of 
varying ethnicities. Another caveat is that our conclusions 
about potential utility are based on thresholds that represent a 
complex balance of personal choices, demographic 
influences, disease characteristics and the clinical 
intervention(s) available. We have used a minimum 10% total 
risk and a minimum relative risk of 2 as the threshold in our 
analyses. Other thresholds may be more appropriate and 
meaningful for given situations, though the data in table S4 to 
table S6 show that our major conclusions are not altered 
much by the choice of threshold. 

In sum, no result, including ours, can or should be used to 
conclude that whole-genome sequencing will be either useful 
or useless in an absolute sense. This utility will depend on the 
results of testing, the individual tested, and the perspectives 
of individuals and societies. What we hoped to accomplish 
with this study is to put the debate about the value of such 
sequencing in a mathematical framework so that the potential 
merits and limitations of whole-genome sequencing, for any 
disease, can be quantitatively assessed. Recognition of these 
merits and limits can be useful to consumers, researchers, and 
industry, as they can minimize unrealistic expectations and 
foster fruitful investigations. 
 
MATERIALS AND METHODS 

Twin studies used for genometype analyses 
We used data from twin studies arising from population-
based twin registries to investigate the distribution of disease 
risk within the population (19–31). The registries in our study 
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included the Swedish Twin Registry, Danish Twin Registry, 
Finnish Twin Cohort, Norwegian National Birth Registry and 
the National Academy of Science – National Research 
Council World War II Veteran Twins Registry. Traits were 
chosen that represented diverse etiologies or were conditions 
of significant public health importance. We evaluated 
diseases in the following categories: autoimmune (T1D, 
thyroid auto-antibodies), neoplastic (breast, colorectal and 
prostate cancer), cerebrovascular (coronary heart disease-
related death and stroke-related death), genitourinary (general 
dystocia, pelvic organ prolapse, and urinary incontinence), 
unknown etiology (irritable bowel syndrome, chronic 
fatigue), neurological (Parkinson disease, Alzheimer’s 
disease and dementia) and obesity-associated (T2D, gallstone 
disease). 

To be included in our analyses, the following data had to 
be available for each twin study: 

1. tn  – total number of monozygotic (MZ) twin pairs 
where the disease status of each twin was known. 
2. cn  – number of disease-concordant MZ twin pairs. 
3. dn  – number of disease-discordant MZ twin pairs. 
4. hn  – number of healthy-concordant MZ pairs. 
5. Heritability (HER) – calculated as the proportion of the 
polygenic liability variation associated with genetic 
factors. 

Using the data from population-based twin studies, we define 
cohort risk (CR) - the fraction of people in the cohort that had 
the disease - as follows: 
   (2   ) / (2 )! "c d tCR n n n   (1) 
Model of the predictive capacity of personal genome 
sequencing 
We define the following generative model that characterizes 
the joint distribution of an individual having a pre-specified 
disease and a particular genometype. Each individual is 
characterized by: (i) a binary (Bernoulli) random variable, ,Z  
specifying whether or not s/he has the disease, and (ii) a 
categorical random variable, ,G indicating the genometype of 
the individual. This means that of the d  assumed extant 
genometypes, each individual can have only one of them. The 
joint distribution of both the disease and genometype for an 
individual is given by ( , )P Z G . This joint distribution 
decomposes into a product of the likelihood of getting the 
disease given the genometype, ( | )P Z G , and the prior 
probability of having the genometype, ( )P G  

 
# $ # $ # $,   !P Z G P Z G P G

 
 (2) 

Thus, to proceed, we specify both the likelihood function, 
( | )P Z G , and the prior, ( )P G . As mentioned above, G  is a 

categorical random variable taking values 1 2, , , % dg g g , each 
of which with some probability. Therefore we have: 
 # $! !i iP G g f   (3) 

for all 1 , 2, , ! %i d . In words, a person can have one of the d  
assumed extant genometypes, and the probability of having 
genometype i  is given by if . 

The probability of having the disease given a genometype 
is  ( 1 | )! ! !i iq P Z G g . Assume that  iq is a sum of a non-
genetic risk, e , which is assumed to be constant for the 
whole population, and genetic risk, ir , that is,    ! "i iq e r  (note 
that 0 1iq& & ). Non-genetic risk ( e ) is the proportion of 
people in the population that would get the disease if all had 
the most favorable genometype possible. Non-genetic risk 
includes all factors that are not inherited, including 
environmental exposures (e.g., diet, carcinogens), epigenetic 
alterations and stochastic influences. We estimated it as: 

# $1! 'e CR HER  (see below). This model assumes that all 

risks are either non-genetic or genetic, i.e., no interactions. 
We require that the unknown parameters, ir , must be 
between 0 and 1 - e , for all i . Therefore, for a given 
genometype, the likelihood term for genometype i  is given 

by: # $ ,       
 

1 , 
"(

! ! ) ' '*
i

i
i

e r
P Z G g

e r
if  1,
if  0.

!
!

z
z

  (4) 

Thus, the joint distribution of disease and genometype can be 
written as: 

 
# $ # $ # $

+ , + ,

1

1

,  1 , 

              0,1 , , , .

z z
i i i i

d

P Z z G g f e r e r

z g g g

'! ! ! " ' '

- - %
  (5) 

If the available data included the genometype and disease 
status of each individual, then inferring estimates of the 
parameters, 1 ( , , ),! % dr rr  and 1  ( , ..., )! df ff , would be 
relatively straightforward. However, the available data 
include only the disease status of monozygotic twins. These 
represent observations of disease status in two individuals 
with identical genometypes. Therefore, we can describe a 
joint distribution for monozygotic twins having a disease or 
not. Let ( )!j jZ Z X  be the Bernoulli random variable 

indicating whether a particular individual has disease and let 
( )!k kZ Z X  be the Bernoulli random variable for the co-

twin. Similarly, let # $!j jG G X  and # $!k kG G X  be 

categorical random variables indicating whether twin j  or k  
of a pair has some particular genometype. The distribution of 
disease within monozygotic twins can be divided into three 
distinct groups, namely: disease concordant, discordant, and 
healthy concordant pairs. 

The probability of disease concordant monozygotic twins 
is given by: 

# $
# $ # $

1

  1 ,  

j k j k

j k j k i j k i
i

P Z Z G G

P Z Z G G g P G G g

! ! !

! ! ! ! ! ! !.
 (6a) 

 o
n 

A
pr

il 
3,

 2
01

2
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://stm.sciencemag.org/


 

2 April 2012 / Page 6 / 10.1126/scitranslmed.3003380 

# $ # $ # $    1 1    j j i k k i j k i
i

P Z G g P Z G g P G G g! ! ! ! ! ! !.
  (6b) 

# $2   .i i
i

e r f! ".    (6c) 

Similarly, the probability of healthy concordant monozygotic 
twin pairs is given by: 

# $
# $ # $

0

   0 ,  

j k j k

j k j k i j k i
i

P Z Z G G

P Z Z G G g P G G g

! ! !

! ! ! ! ! ! !.
(7a) 

# $2    1 .i i
i

e r f! ' '.    (7b) 

And the probability of monozygotic twin pairs discordant for 
disease is given by: 
 # $ # $ # $2 1 .  / ! ! " ' '.j k j k i i i

i

P Z Z G G e r e r f   (8) 

Optimization 
For each disease, let cn , hn  and dn  correspond to the 
number of concordant disease, healthy and discordant twin 
pairs. Assuming that there are d  genometypes, the expected 
number of twin pairs of each of the three types is simply the 
total number of twin pairs times the probability of being each 
kind of twin pair: 
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0 1
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Because we are interested in the limits of utility of genetic 
testing, we search for a parameter set that maximizes or 
minimizes the fraction of patients that will receive a positive 
test result, given certain constraints. Formally, we define the 
positive fraction (PF) as the proportion, among twin pairs 
with at least one disease case, that possess a genometype 
sufficient to change clinical action. In our notation: 

# $ 0 1 # $ # $ # $

0 1 # $ # $# $

2

2

[ 1 ]
, ; ,

[ 1 ]
i

i i i ii d r t

i i i ii d

f e r e r e r
PF t e f p

f e r e r e r
- 2

-

" " " ' '
!

" " " ' '

.
.

(12) 

where t  is the genetic risk required for a person to be at the 
threshold required for clinical utility and d  is the maximum 
number of genometypes under consideration. The thresholds 
for each disease are provided in table S2, and for each 
disease, t  is defined as this threshold minus e . 

We therefore seek to solve the following optimization 
problem, for each disease: 
maximize
   , f r  # $, ; ,PF t e f p , (13) 

# $
+ ,

0 1
2

, ,

subject to                 0, 1, 0,1 , E 0.25,      
-

3 45 ! - ' &6 7
8 9. . !

xi i i x
i x c h d

f f r n n

  (14) 

where Eq. (14) enforces that none of the residual errors can 
be larger than 0.5. The parameter xn  is the estimated number 
of twin pairs of each type obtained by plugging the estimated 
parameters into Eqs. (9) – (11). This is therefore a 
quadratically constrained nonlinear optimization problem. We 
utilize the following algorithm to obtain a local optimum. 

For ' 2!d , i.e., starting with ' 2!d  genometypes, we 
implement a grid search over the parameter space and select 
the parameters that maximize the likelihood over a 
constrained search space. Let # $,! f r:  and !  be the set of 
all : 's under consideration, as defined by the feasible region 
specified in Eq. (14). We then discretize this space into nine 
bins for each element of f  and 100 bins for each element of 
r  and denote # $|P Z G  by # $|P Z G:  to emphasize the 

dependence of the joint distribution on the parameter. Thus, 
we aim to solve the following optimization problem: 

 # $ # $2

,

argmax
! , |j k j k

i j

P Z Z G G-! !;
!

:::   (15) 

where # $ # $ # $# $' ' '

,d d df r!
!! !: is the parameter estimate assuming 

only 'd  genometypes. For each ' 3, , 20,d ! % we seek to 
solve the above optimization problem. To initialize, we pad 

the previous solution with zeros, yielding # $
# $ # $# $' '1
0 ,0d df f"

!
! !

 

and similarly for # $
# $' 1
0
dr "! . Then we use MATLAB’s fmincon to 

find a local maximum of PF given the constraints. If no 
improvement in PF is obtained for ' 1"d  genometypes using 
the default “padded” initialization, we try randomly 
initializing. We stop trying random initializations if any of the 
following criteria are met: (i) if we find an improvement in 
PF with the constraints satisfied, (ii) if we reach 100% PF, or 
(iii) if we reach 15 random initializations. If criterion (i) is 
met, we denote the parameters achieving the improvement 

# $' 1d "!:  and then increment 'd  and continue. If criterion (ii) is 
met, we stop incrementing 'd , as we have achieved the 
maximum possible PF, so adding additional genometypes 
cannot possibly maximize it further. If criterion (iii) is met, 

we let # $
# $
# $' '1 1
0

d d" "
!

! !
: : ; that is, we let our final estimate for 

' 1"d  simply be our estimate for 'd  padded with a zero. We 
then increment 'd . 

We repeat the above approach for each disease. The 
parameters that we determined using this approach to 
maximize PF were then used to estimate the percentage of the 
population testing positive for a given disease, as well as the 
relative risk of disease for those individuals testing negative, 
as defined below. We apply this approach separately for each 
disease, thus assuming independence. To find the minimum 
PFs compatible with the twin data, we used a simiilar 
procedure. 
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Relative risk of disease if testing negative 
We determined the relative risk of disease of individuals 
whose whole-genome sequencing tests were negative after 
maximizing or minimizing the sensitivity (PF) of the test. 
Disease risk in the population testing negative (DRneg) is the 
ratio of the number of disease cases testing negative to the 
number of individuals in the population testing negative: 

 
# $ # $

0 1

2 1
2

i

c d
neg

t ii d r t

n n PF
DR

n f
- <

" '
!

.
  (16) 

To determine the relative risk of disease if testing negative 
(RRneg), we calculated the ratio of disease risk of individuals 
testing negative to the disease risk in the twin cohort (CR): 

 ! neg
neg

DR
RR

CR
 (17) 

 
Calculation of relative risks 
We defined relative risk (RR) in table S2 as the minimum 
total risk of individuals with genometypes carrying a given 
genetic risk compared to the total risk of individuals with 
genometypes carrying a genetic risk of 0% (i.e., determined 
solely by non-genetic factors). The minimum total risk was 
determined using the standard 10% risk threshold described 
in the text as well as others (tables S4 to S6). In all cases, 

 
# $# $

# $
1

  
1

" '
!

'

PPV CR HER
RR

CR HER
  (18) 

 
Other parameters and models 
Equation (14) enforces that none of the residual errors can be 
larger than 0.5, such that upon rounding we obtain a perfect 
fit. Changing this parameter from 0.5 to 0.01 did not alter the 
PF's depicted in Fig. 1 for any disease. 

Instead of maximizing PF's, we also determined the 
distributions of genometype risks (ri) and frequencies (fi) that 
would minimize the relative risk of disease of individuals 
whose whole-genome sequencing tests were negative. This 
independent optimization yielded results nearly identical to 
those reported in Fig. 1, Fig. 2, and Fig. 3. 

As noted above, we estimated the non-genetic risk as 
# $1! 'e CR HER . This risk is somewhat higher than that 

derived from the standard liability threshold (LT) model. 
However, it has recently been shown that the LT model 
underestimates the non-genetic contribution to disease 
because it does not take into account synergistic interactions 
among genes (41). The model described herein does not make 
any assumptions about the nature of the interactions between 
genes, such as additivity. However, the LT model can also be 
used to approximate the maximum capacity of whole genome 
sequencing to detect individuals at pre-defined risks under 
certain simplifying assumptions about the distribution of risk 
alleles in the population. The PF predictions from the LT 

model employing 10% thresholds are provided in table S4 
and can be compared to the results of the current model with 
10% thresholds (table S4). 

Finally, our model can be used to calculate the potential 
clinical utility of whole-genome sequencing under any 
assumption about the proportion of non-genetic contributions 
to disease risk, or estimates thereof. Representative values for 
each disease, with non-genetic contributions ranging from 
10% to 90%, are provided in table S7. 
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human diseases. 
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each disease. 
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genometypes providing maximum sensitivity (PF) for 
detection of each disease. 
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testing positive with whole-genome sequencing at varying 
risk thresholds, or with the liability threshold (LT) model 
employing a 10% threshold. 
Table S5. Percentage of population testing positive with 
whole-genome sequencing at varying risk thresholds. 
Table S6. Relative risk of disease if testing negative with 
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Fig. 1. The fraction of cases (i.e., patients with disease) 
who would test positive by whole-genome sequencing. For 
each disease, the maximum and minimum fraction of cases 
that would test positive using the thresholds defined in table 
S2 are plotted. 

Fig. 2. Percentage of individuals in the general population 
who would test positive by whole-genome sequencing. For 
each disease, the maximum and minimum fraction of 
individuals in the population that would test positive using 
the thresholds defined in table S2 are plotted. 

Fig. 3. Relative risk of disease in individuals testing 
negative by whole-genome sequencing. A relative risk of 
100% represents the same risk as the general population, i.e., 
the cohort risk. Relative risks were calculated using the 
genometype frequencies and genometype genetic risks that 
maximized or minimized sensitivity for disease detection. 
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Box 1. Definition of terms 

Genometype A set of genomes that confer a specific genetic risk for a given 
disease

Genometype genetic risk (r) The genetic risk conferred by a given genometype  

Genometype frequency (f) The frequency of a given genometype in the general poulation

Threshold Minimum risk for a given disease considered to be clinically 
meaningful

Heritability (HER) Proportion of phenotypic variance associated with genetic factors 

Cohort risk (CR) Risk of disease in the relevant twin cohort  

Non-genetic risk (e) Proportion of cohort risk due to non-genetic factors

Total risk Sum of genetic risk conferred by a given genometype plus non-
genetic risk

Relative risk Ratio of total risk associated with a given genometype to cohort 
risk
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Table 1. Population-based twin studies used for analysis 

Disease/Condition Sex Number of MZ 
Twin Pairs

Number MZ Disease 
Concordant Pairs

Number MZ Disease 
Discordant Pairs

Disease 
Prevalence in 
Cohort (CR )

Reference

Bladder Cancer Male & Female 15668 5 189 0.6% Lichtenstein et al. (19)

Breast Cancer Female 8437 42 505 3.5% Lichtenstein et al. (19)

Colorectal Cancer Male & Female 15668 30 416 1.5% Lichtenstein et al. (19)

Leukemia Male & Female 15668 2 103 0.3% Lichtenstein et al. (19)

Lung Cancer Male & Female 15668 18 296 1.1% Lichtenstein et al. (19)

Ovarian Cancer Female 8437 3 125 0.8% Lichtenstein et al. (19)

Pancreatic Cancer Male & Female 15668 3 123 0.4% Lichtenstein et al. (19)

Prostate Cancer Male 7231 40 299 2.6% Lichtenstein et al. (19)

Stomach Cancer Male & Female 15668 11 223 0.8% Lichtenstein et al. (19)

Thyroid Autoimmunity Male & Female 284 7 17 5.5% Hansen et al.  (20)

Type 1 Diabetes Male & Female 4307 3 20 0.3% Kaprio et al. (21)

Gallstone Disease Male & Female 11073 112 956 5.3% Katsika et al. (22)

Type 2 Diabetes Male & Female 4307 29 113 2.0% Kaprio et al.  (21)

Alzheimer's Disease Male & Female 398 2 8 1.5% Gatz et al.  (23)

Dementia Male & Female 398 3 16 2.8% Gatz et al.  (23)

Parkinson Disease Male & Female 3477 7 60 1.1% Tanner et al. (24)

Chronic Fatigue Female 1803 133 526 22.0% Sullivan et al. (25)

Chronic Fatigue Male 1426 48 266 12.7% Sullivan et al. (25)

Gastro Esophageal Reflux Disorder (GERD) Female 1260 63 284 16.3% Cameron et al. (26)

Gastro Esophageal Reflux Disorder (GERD) Male 918 32 185 13.6% Cameron et al. (26)

Irritable Bowel Syndrome Male & Female 1252 14 97 5.0% Bengtson et al.  (27)

Coronary heart disease (CHD) Death Female 2004 97 424 15.4% Zdravkovic et al. (28)

Coronary heart disease (CHD) Death Male 1640 153 451 23.1% Zdravkovic et al. (28)

Stroke-related Death Male & Female 3852 35 316 5.0% Bak et al. (29)

General Dystocia Female 928 40 173 13.6% Algovik et al. (30)

Pelvic Organ Prolapse Female 3376 34 157 3.3% Altman et al. (31)

Stress Urinary Incontinence Female 3376 13 87 1.7% Altman et al.  (31)

MZ: Monozygotic.  Disease prevalence in cohort (cohort risk, CR ) was determined as described in the Materials and Methods.
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